/Length 456 /Filter /DCTDecode

>> %�쏢 /First 811 ޸@*�=�o>%�A������\M�*�J���}�>�� �d�ǝ��AK�C9,j���,s�z՝a$��4AOA(c���FXI����S�V}z0�G��=�']��˧kb����Xy��;JП��8S�`a�ya2}>�ȹ�0���'�P �rQA�0i[E�HX�h�X�Γ�a�x��r��N+a��Q����ͣ��%X��g�:h9������(� �o� ��q �)='�;eޠY��ê�7��|��z�����81i�LH[< ݭ-R�J_`Y$�-����a�`ٍ��Fj����u�5�.��aRQ�Ӆ��]�˄+���s��]��q>�ů���~r �!���~�&q�B"�?�7RV�. endstream /Filter /FlateDecode Exercise. J*)+IH*��D�H��1JI&$ʌ��G��O>��и���f�RIi�KJJ�FN*K(դrE*�,�A ��,�3�QV`��K��r�q�r��R� ��S�Ӥ��9')��"Ux� 1\�)g�d��)�x弯 ��T%�_�kA�1�i&�� I�P�S�ヴ�� ��\�LN�ɜ+�I������ER��6Y�H0O�`��CY�;����K��I�e�ZM��`�AK�^���g��?���-=�WUMx!���׳gﭳ��n�2��s��~M_��{� �3u�޽c�[��p�M=,��E߶�-)ڵ�+Ѳ�h*4݆����u�ј�T��b�v��նm�Th��BM�u���>P\�te;)�~���{ȏ"�?����Y>�y�ӛ�;c�ov�2���u����]��I��oS��1�5�b��\�Ґ۬/L�$y��ڸ���f�WƇ)��]����͕����l�M�Ն����#��x�r٨�i�`�ϩon������� + X. n ≥ x, except for, we do not say that the random sequence should be i.i.d. 1 Simple Random Walk We consider one of the basic models for random walk, simple random walk on the integer lattice Zd.

���� JFIF � � �� Photoshop 3.0 8BIM �� 4Exif MM * ( �i & 1.1 One dimension We start by studying simple random walk on the integers. endobj ��B�wP���%|' 5 0 obj In mathematics, a random walk is a mathematical object, known as a stochastic or random process, that describes a path that consists of a succession of random steps on some mathematical space such as the integers.. An elementary example of a random walk is the random walk on the integer number line, , which starts at 0 and at each step moves +1 or −1 with equal probability. At each time unit, a walker flips /Filter /FlateDecode �9'j% Sec-tion 1.2 introduces the notion of stopping time, and looks at random walk from the perspective of a fair game between two players. -fyFE ���4�����@��X0���$� �+&�h -�~�"�gE�+~��H `\�t)qE\ n ����� The red path is the reflection of the blue path up until the first epocht∗ where the blue path touches the time axis. stream �� ;8\I�<7܍�V��®����U�q7��_�㟵%�{$�ӳ,7�} �|T��l�M�}=Җd`���f����z�x���YOt\N�GΑGh�o��6�>�+'�jl����Z��F��d�(ҙ6�ڧ�_ȤKN��D��mF���.�8+����J|�:t�S���8[xn�aQ���"�)���H#�0���>:/Ha�ҽ$E!��ՄA��O^]����� ~�3Of;)wf�|��aT,"7R[W�B;d-��F���L�y��{���x]��4�ڰ X�����U+�=\\���s$8T���#�В�0�6���6*%�8AF���� xx(? /N 100 stream [��.c+q#������ 6����� ���i%� ����R�`i#J

<> In later chapters we will consider d-dimensional random walk as well. /Length 24960 ���^��]u�\L����_,o1>bk�M��c������ ������7���P�k[����f1l�4~ ;}�p�"�Fk�Dջ�g��G�G-|���p���b�ok�Ϧz�kN�9f��:��>q�u&�) [� :H���,)��b� At each time step, a random walker makes a random move of length one in one of the lattice directions.

/ColorSpace /DeviceRGB }-��Bu�I�h��s�5�T|C�>�T;���ZګMu��A�v�J���}@.v���Yx� �?��aߜDe�y�{x�&�x�E"��}��'�_���ǹ��oo������q=�aܑ%j>Д�fKh���P�n o�8�Q�L��PS�e7��Q�k����͈Y�\�ƺ��~ݥa���;E��t�������#�� 222 0 obj << /Type /XObject ����uqq�LkY)l��i��Ǭ��x�j����w�~��V�Z~/����ۏ���M �u��(Q�`m����j�v�z�G��C��1H�W�Йb����w�-����l{(~ M�N�g߉t��YU3qqs v�X��g/g���< @�!L⭬�c�+ ��$+���&GX /Width 136 Section 1.1 provides the main definitions. Hint: What you must show is that for any two sequences f!j gand f! Proof.

�̋� �L��&X�V����l�xY ��-�~?��r��?L��a���� ����t�]��$g�0��c\ۀ�����3\� ̾���cFA�::3������9����'P�M�+�M^ë�Ue�D2j���o\dԎר�5��[��m�-�}�5n74'QQ�V�C�IYծ���5�Ȉ�HyG�k��f�������j��r�9,>����'�:�,����g��h��y�Y��YO�M���V�>���1�5�.����Ej���� %PDF-1.3 �1(�П�z h���wր-}�P�$z��747�?p� $�J.�lVI$���,�N�J�I�Y�/� !��p̄��l�35,�t��u"*�3N)~[&��,h����=�[l�I-���L�5[i�7X1��mf1�OfK"��W݄N��q[(���b���Sp��H �U� /Type /ObjStm /Length 1344 (Strong Markov Property) If ˝is a stopping time for a random walk fSngn 0, then the post-˝sequence fS˝+j gj 0 is also a random walk, with the same step distribution, started at S˝, and is independent of the random path fSj gj ˝. %PDF-1.5 >�������gg�S���e�M�F�춽��s-�:��m�|2���ki����W�6���)�x>w(dK����7���Ֆ�V����I^_vx)�����>14W WU�|}�¤�q,>�,�g+�{���ꋛ̨�A�ʴ.���k��qt�#���@�l�j���b���aX������ �z!��3�K"�R"�7��P3d��!1`+��> 4��%/d�a�� _]�3D� �ы�sr�KN�n�R����#�,0 Od"2N���1(��Pl8'odw������/uωd